
MEASURES OF AXIAL SYMMETRY FOR OVALS(9 

BY 

B. ABEL DEVALCOURT 

ABSTRACT 

A measure of axial symmetry for ovals is defined, and eleven particular 
measures are studied. Lower bounds for these measures are determined on 
the classes of arbitrary ovals, centrally symmetric ovals, and ovals of 
constant breadth. The proofs of these results make use only of elementary 
geometry and the properties of convexity. 

In this paper we shall deal with ovals in the Euclidean plane, i.e., with compact con- 
vex sets whose interior is non-void. Ovals can possess two kinds of symmetry: with 

respect to a point (central symmetry) and with respect to a line (axial symmetry). 
For simplicity, we shall refer to these as centrality and axiality, respectively, and 
shall say that an oval is central or axial if it possesses a center or an axis of 

symmetry. Our concern in this paper is with axiality, and in particular, it consists 

in "measuring" the degree to which an oval possesses this property. Corresponding 

properties and measures of centrality have been thoroughly reported by 

Gninbaum [4]. The only known results for axiality are found in papers of Nohl 

t6], Krakowski [5], and Chakerian and Stein [l]. 

DEFINITION. A measure of axiality is a real-valued function f defined on the 

class ~ of all ovals in E 2 and satisfying the following conditions: 

(i) 0 <= f(K) __< 1 for every oval K; 

(ii) f(K) ---- 1 if and only if K is axial; 

(iii) f is similarly-invariant, i.e., it assumes equal values on similar ovals. 

A particular measure of axiality is defined by means of intuitive considerations 
based on the properties of symmetry and the geometry of  convex sets. Of special 
interest is the determination of the minimum value of a measure of axiality and 

of an extremal oval on which this value is attained, not only on the class of all 

ovals, but also on certain subclasses, such as the central ovals and ovals of constant 
breadth. 

It is worth pointing out that, by prolaerty (iii) of the preceding definition, it 
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is sufficient to consider a measure of axiality as defined on the space x s of 
equivalence classes of similarity-equivalence ovals. Thus, for example, we may 
limit ourselves, with no loss in generality, to the set of ovals whose diameter is 1. 

It has been pointed out by Griinbaum [4, p. 237] that xs is not a compact 
space. This implies, in particular, that a minimum value and an extremal oval 
for a measure of axiality defined on xs may not exist. In such a case, we seek to 
determine the greatest lower bound of the measure and a sequence of ovals on 
which this bound can be approximated as closely as desired. 

With these preliminary remarks in mind, we will now define and investigate, 
in the following sections, eleven measures of axiality for ovals. 

1. The set of midpoints of all chords of an oval K in a fixed direction is called 
the load curve ("schwerlinie") of K in the direction ~b, and denoted 2,(K). The 
basic facts about load curves are contained in a paper of Zindler [8]. Here we 
make use of the elementary observations that every load curve of an oval is con- 
nected and that in the direction q~d normal to a diameter of d of K, the endpoints 
of 2~,(K) are also the endpoints of this diameter. This last remark follows from 
the well known fact that each support line to an oval K in the direction ~ba meets 
flK (the boundary of K) in only one point, viz., an endpoint of the diameter d. 

Let br denote the breadth of K, and b~ { Cv[2~(K)] } the breadth of the convex 
hull of 2~(K) in the direction q~. If  K has an axis of symmetry in the direction 

+ ~/2, then this axis contains 2~(K), and b~{Cv[2r Conversely, if 
the load curve for a given direction is a line segment normal to this direction, 
this segment determines an axis of symmetry for K, since it bisects all chords of 
K in this direction. For an oval K, b~(K) > 0 for every ~b, 

o < < 1 ,  
b,(K) - 

and equality on the left holds if and only if K has an axis of symmetry normal 
to 6b. Since the set of all directions in the plane is compact, the maximum of 

f~(~b, K) = 1 
b,(K) 

exists on this set, for a fixed K. From these remarks, it is clear that the function 

f l(K) = max {(fd~b, K)} 
r 

is a measure of axiality on the set of ovals in E 2. 

Trmom~M 1. For every oval K, fl(hO > �89 and this bound is best possible. 
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Before proceeding with the proof of this theorem, several lemmas are needed. 

LEMMA 1. For every oval K, there is a direction ~Po for which fl(~bo, K) > �89 

Proof. It is sufficient to take for ~bo the direction tkd (resp. $w) normal to a 
diameter (resp. width, i.e., a chord of K of minimal length) of K. (We shall prove 
the lemma only for the direction qSd, since the proof in the other case is similar 
and can be accomplished with only minor changes.) To see this, let AB be any 
diameter of K, mt and m2 the parallel support lines to K, and kt and k2 the 
parallel support lines to Cv[2,d(K)] in the direction of AB (Fig. 1). First of all, 
since the points A and B are also the endpoints of 2,~(K), AB ~_ Cv[2,,(K)]. 

m l k I k 2 m 2 

, /  
Fig. 1 

Let Xl, x2, x3, x4 be the distances, respectively, between the lines ml and kx, 
kt and AB, AB and k2, ka and m2. Assume, by way of contradiction, that 
f l ( ~ ,  K) < �89 i.e., that Xx + x4 < �89 If both x2 < xx and x3 < x4, 
then we have b,~(K) = Xx + x2 + xa + x4 < 2(xt + x4) < b,~(K), which is 
absurd. We may suppose, then, with no loss in generality, that x2 > Xl. Since kl 
is a support line to Cv[2,~(K)], there is at least one point P of b,~(K) on kl. The 
inequality x2 > Xl implies that the chord of K in the direction ~d having 
P as it midpoint does not meet the diameter AB, which is not possible 
for a convex set K. Therefore, our assumption is false, and f~(~,, K) > �89 

To prove Theorem I, it remains to show that for some direction 40 we have 
the strict inequality ft(~o, K) > �89 
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LEMMA 2. I f  ft(d? d, K) ---- 1/2, where c~ is normal to a diameter d = AB of K, 
AB ~ iK ,  and conversely. 

Proof. From Lemma 1, it is not possible that x2 > xl or xa > x4; therefore, 

fl(~ba, K ) -  �89 implies x 1 + x4 = x2 + x3----�89162 and also that Xl = x2, 
and x3 = x4. If  Xl = x2 > 0, then (as in the proof of Lemma l) the midpoint 
of some chord of K in the direction ~bd lies on k~, and one of its endpoints lies on 
AB ~ the open segment between A and B. Since the endpoint of a chord of K is 
in ilK, this implies that a point of the open segment AB o, and hence (by convexity) 
the entire closed segment AB, belongs to ilK. In this case x a = x 4 = 0 ,  and AB 
_ m2, which proves the first part of the lemma. The converse is trivial. 

LEMMA 3. I f  d is a diameter and w a width of an oval K, then at most one of 
these chords is a subset of ilK. 

The proof of this lemma is a straightforward application of the basic properties 
of convexity. 

LEMMA 4. I f  ~b~ and dp~ denote the directions normal to a diameter and a 
width, respectively, of an oval K, then either fl((ad, K) > �89 or f l(q~, K) > �89 

Proof. By Lemma 1, fl(~bd, K) > �89 and fl(~bw, K) > �89 If  fx(~bw, K) > �89 
we are done, so we assume that fx(dpw, K)=�89  If w = C D  is a width of K, and 
CD ~ ilK, then this lemma is an immediate consequence of the two preceding. 
Therefore, we may also assume that CD ~ ~_ K o, the interior of K. This situation, 
which indicates that Lemma 2 is not true if we replace "diameter" with "width," 
is possible, as the following example shows (Fig. 2). The segment CD is the only 

A 

m t 

C 

k~ D k z 

Fig. 2 

B 
m 2 

width of K, which has been constructed so that the circle with CD as diameter 
intersects flK only in the two points C and D. The load curve 2,~, has for endpoints 
the midpoints of the segments AC and BD, which both lie in ilK, so that 
fx(~bw, K) = �89 and yet CD ~ ilK. 

Let distances x~, i : 1, 2, 3, 4, be defined as in Lemma 1, except that the four 
lines in question are now in the direction of the width CD of K. Since 
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f~(~bw, K) = �89 by hypothesis, then, as in the proof of Lemma 2, xt = x2 and 
xa = x4, there is at least one point of the width CD which is the endpoint of 
a chord of K in the direction q~w, and hence at least one point of CD which belongs 
to ilK. But since CD o ~ K o, by hypothesis, such a point can only be an endpoint 
of CD. Hence, under our two assumptions that fl(~bw, K) = �89 and CD o ~ K o, 
the points C and D must be endpoints of segments AC and BD in ilK, where A 
and B are vertices of a supporting rectangle R of K with sides in the direction 
~w. Since K ~_ R, d(K) < d ( R ) = A B  (d(S) denotes the diameter of the set S); 
since A, B~ flK, AB < d(K); therefore, AB = d(K), and AB ~ ~ K ~ By Lemma 2, 
this implies that fx(~bd, K) > �89 where q~a is normal to AB. This completes the 
proof of the Lemma. 

Proof of Theorem 1. The inequality f l (K)  > �89 follows immediately from 
Lemma 4, so that it suffices to show that there exist ovals whose measure by 
fl is arbitrarily close to �89 implying that this bound cannot be improved. Let 
ABC be a triangle, and ~b o a direction in the plane which is neither parallel nor 
normal to the sides of ABC. Then the points A, B, C lie on distinct lines in this 
direction, and we may assume that A lies on a line between the other two. Let 
AD be the chord of ABC through the point A in the direction ~o, and E its mid- 
point. Support lines to ABC in the direction ~b o + n/2 each meet it in a single 
vertex only, by the choice of ~bo, say in points A and C (Fig. 3). Then the load 

l 

- - -  b~tABC) 

Fig. 3 

curve 2r is the polygonal arc BEC, and since D does not lie on the support 
line through C, b~,o{CV[2~,o(ABC)]} > �89 and 40 cannot be a direction 
for which the maximum value off1(~b, ABC) is attained. Therefore, to determine 
this maximum, i.e. the value of the measure fl,  it is sufficient to consider the six 
(not necessarily distinct) directions parallel and normal to the sides of the triangle. 

Now consider a right triangle ABC, with AB its diameter. Then it is easy to see 
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that of these six directions, f l($, .4BC) > �89 for only one of these, viz. the 
direction ~bw normal to the width of ABC, which is the altitude to AB. By choosing 
angle B nearly a right angle, fl(~w, ABC) can be made arbitrarily close to 1/2. 
If f l  has a minimum value it can only be �89 but in the light of Lemma 4, this 
minimum value is not attained on r. Hence, the value �89 is only the greatest 
lower bound of the measure f~, and there is no cxtrcmal figure. This completes 
the proof of the theorem. 

The best possible lower bound off1 on the subclass of central ovals is not known. 
However, we conjecture that it is x/2/2, since this is the greatest lower bound of 
fl  on the class of parallelograms, as can be seen from a direct computation of 
fl(~bw) andfl(~d). The proof of this last statement will not be given here (See [2]). 

Let S : ABCD denote a unit square circumscribed about an oval K 1 of 
constant breadth 1, E and F the midpoints of AB and CD, respectively, and 
the closed (shaded) region of Fig. 4, constructed by drawing circular arcs of radius 

A E B 

D F C 
Fig. 4 

1 about E and F, and about the intersections of these arcs with the other two 
sides. From properties of ovals of constant breadth, wc may rotate Kx inside S 
so that the points E and F belong to flK 1. For this position of/('1, which we shall 
call a standard position with respect to the square S, wc have the following 

LEMMA 5. f lK 1 c ~. 

The proof of this lemma is a consequence of elementary properties of ovals 
of constant breadth. 

THEOREM 2. For an oval Kl #constant breadth,f~(K~) ~_ x/{2 x/3 - 3} ,-, 0.681. 

Proof. With K1 in standard position with respect to a circumscribed square 
S, the points E and F of Fig. 5 are the endpoints of 2~(K~), where ~b is normal to 
EF. As a consequence of the lemma, a chord of K~ in this direction must have a 
midpoint which is no farther from the diameter EF than the point X, the midpoint 
of the segment OP in this direction, where O is a vertex of the Reuleaux triangle 
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E 

f G 

Y F 

Fig. 5 

OFQ, and P lies on the boundary of the Renleaux triangle EGI-I. Since S is a unit 
square, an easy calculation yields O e =  ~ / { 2 ~ / 3 - 3 } ,  and from the above 

remarks we have bc~{Cv[2~(Kl)] } <= 2 �9 YF = 2 ( t  - OX)=  2( t  - tOP), 
and fl(K1)->_ fl(q~, K1)----~/(2 x / 3 - 3 } ,  since b#(Kx)~-1 for every (p. 

It is doubtful that this bound is best possible. We are assured, however, by the 
Auswahlsatz of Blaschke that a minimum value for f l  on the subclass of ovals 
of constant breadth and an extremal figure exist, since a sequence of such ovals 
cannot converge to a degenerate limit, but only to another oval of constant 
breadth. 

2. Let ~b be a direction in the plane, rn 1 and m2 the support lines to an oval K 
in this direction, and k = k(~) a line intersecting K and normal to (k. Let k N mi 
be the origin of a system of rectangular coordinates; then the support line m 2 
passes through the point b~(K) on the y-axis, where ~ = q~ + re/2 (Fig. 6). For 
every y e [0, b,(K)], there is a chord ~ = YR(Y) of K in the direction (k which is 
either divided by k into two parts c = CR(Y) and C = Ck(Y), chosen such that 
c/C ___ 1, or which does not meet k. We define 

c/C, if ~ n k  Ci~; 

r(dp, k,y) = 0, i f ) , ~ k  = ~ 

If  K is axial, then for some direction (~ and some line k (which coincides with an 
axis of symmetry of K), r(tk, k, y) = 1 for every y e [0, b~(K)], and conversely, 
if r(~b, k, y) = 1 for every y and for a line k normal to the direction q~, then k is 
an axis of symmetry for K in the direction ct. With these facts in mind, we can 
define a measure of axiality by considering the mean value of the ratios r(~b, k, y) 
over the interval [0, b~(K)], then choosing the "best possible" line k in the fixed 
direction a, and finally, the "best possible" direction. More precisely, we define, 
for every oval K, the measure of axiality 
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) f2(K) = max max r(dp, k, y)dy . 
4, k 

It is necessary to adopt the mean value of the ratios r(ck, k, y) rather than, say, 
the minimum value, since in this latter case the analogously defined measure 
has values arbitrarily close to zero on right triangles with one angle nearly zero, 
which renders it uninteresting. 

THEOREM 3. For every oval K ,  f 2 ( K ) >  �88 

Proof. We may assume that K has diameter AB =- 1, so that it is contained in 
a lens-shaped region bounded by two arcs of radius 1 drawn about the points 
A and B as centers (Fig. 7). Let C and D be the points of intersection of flKwith k, 
the perpendicular bisector of AB, and kt and k 2 the lines of support to K through 
the points A and B, respectively. I f  ? is any chord of K in the direction ~b a of AB, 
either 9, meets k or not. I f  ? t3 k # ~ ,  7 = F J, and ? (3 k = H, then either 
I > H J / H F > H I / H E  or 1 > H F / H J > H G / H K  (see Fig. 7). Since 
H I ~ H E  = H G / H K  (ACBD is a symmetric quadrilateral), it is not necessary 
to distinguish these two cases, lfrn I and m 2 are lines through C and D, respectively, 
in the direction $d, then every chord of K lying between these lines meets k. The 
average value of the ratios HI/HE, for all such chords, is �89 Therefore, if 
b = b4,d+~/2(K), and h = CD, it follows from these remarks that 

1 fo b h f2(K) > --~ r(qb ~, k, y)dy > �89 �9 -~-. 
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Fig. 7 

The theorem is proved by showing that h/b > �89 But this is an almost trivial 
consequence of convexity and the fact that K is contained in the given lens-shaped 

region. 

THEOREM 4. For a central oval Kc, f2(Kc) ~ 2log 2 - 1 N 0.382. 

Proof. It is sufficient to consider the ratios r(~b, k, y) for those chords lying to 
one side of the center O of Kc, since the condition of centrality implies that these 
ratios for the two "halves" of the oval are identical. Let AO be half of a diameter 
AA' of Kc, and BC the chord passing through O and perpendicular to AO. Con- 
struct the isosceles trapezoid T=BCC'B' by drawing CC'[[BA and BB' IICA. 
If K'c is that "half" of Kc lying on the same side of BC as A, then dearly K" ~_ T, 
for were this not the case, a support line to Kc at B or C would intersect the 
interior of its other "half," which is not possible for a convex set. If 7 = E1 is 
any chord of K" in the direction ~ba normal to AO, and G = E1 n AO, then 
(referring to Fig. 8) either 1 -> EG/GI > FG/GJ or 1 > GI/GE > GH/GD. As 
in the preceding theorem, because of symmetry only one of these cases need be 
treated. Since f2 is similarity-invariant, we may assume OC = OB = 1, and 
OA = d. Then the mean value of the ratios FG/GJ, for all chords of K" in the 
direction 4~ is given by 
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t-z y/a 
d -  Jo 1 + y/d dy = 2log 2 - 1, 

independent ly o f  d. 

F r o m  the above  remarks  and inequalities, it is clear that  

f2(Kc) > "-~ r(dpa, k ,y)dy  > 21og2 - 1, where b = b+d+~/2(K+). 

TrmOREM 5. For an oval K1 of  constant breadth, f2(K1) > ~o ~ 0.5474. 

Proof.  We make  use of  L e m m a  5, and consider  K1 to be in s tandard  posi t ion 

with respect  to a c i rcumscr ibed square S =  ABCD. I f  E =  flK 1 ~ AB, 
F = flK 1 n CD, c~ a is the direct ion no rma l  to k = EF, and ? = X Y  is a chord  

of  K1 in the direct ion ~b d, then X Y  n EF = {Z} # ~ ,  and  we m a y  assume tha t  
Y Z / X Z  < 1 (Fig. 9). Clearly, Y Z / X Z  >->_ Z Y ' / Z X ' ,  where Y' lies on an arc of  

A f B r 

Fig. 9 
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the Reuleaux triangle EIJ, and X' lies either on a side of S or on an arc of the 
Reuleaux triangle FGH, depending on whether X Y  lies between the lines GH 
and KL (position 1) or between the lines GH and AB (position 2). By symmetry, 
similar observations can be made for chords lyilag between KL and CD. 

Let P be the origin of a system of rectangular coordinates, and EF the y-axis. 
By symmetry, the mean value of the ratios Z Y'/ZX' as functions of y is the same 
for y ~ [`/3/2 - 1, `/3/2 - �89 ] as for y ~ [`/3/2 - �89 ̀ /3/2], so it is sufficient 
to consider only those chords lying in, say, the "upper"  half square. 

For y ~ [`/3/2 - �89 ̀ /3/2], ZY'  = ZY'(y) = x/{1 - y 2 }  _ �89 ; 

for y e [`/3/2 -- �89 ̀ /3 -- 1], ZX' = ZX'(y) = �89 (position 1); 

for y e [ , / 3  - l ,  , / 3 / 2 ] ,  z x '  - -  , / { 1  - ( y  + 1 - , / 3 / 2 )  2} (position 2). 

Therefore, 

f2(K~) > r(dp.,k,y)dy = 
4,/312- 1 

, , t . 43 /2 -1 /2  

/ ' , / 3  - 1 
4 / 

,/43/2- 1/2 

f~/3/2 ZY'(y) 
ZY(y) dy >-_ 2 ZX'(y) dy 
ZS(y) d 4 3 [ 2 -  1/2 

43/2 1 / { I  - y2) _ �89 
dy + 

4 3 - ,  1 / { I - ( y ~ ' ~ 3 - / 2 ) 2 }  dy 

[ ` / { 1  - y2}  _ � 8 9  

f 
43/2 !/{1 - y2} 

+ 2 dy 
43-, 1 / U - ( Y +  1-1/3/2)2} 

- -  f43/2 dy 
a,/3-1 1/{1 --(y + 1 - 1/3/2)2} 

= ~o " 0.4774 + 0.5936 -- 0.5236 = 0.5474. 

3. If  an oval K is reflected about a line k which meets its interior, then the 
intersection of K and its reflected image Kk is an axial oval contained in K, and 
the convex hull of the union of K and K k is an axial oval containing K. It follows 
from the Auswahlsatz that, among all the axial ovals in K, there is at least one 
with maximal area, and among all the axial ovals containing K, there is at least 
one with minimal area. Furthermore, if K is axial, then the largest (smallest) 
axial oval contained in (containing) K is clearly K itself, and conversely. These 
considerations lead to the definitions of the following measures of axiality (where 
[S] denotes the area of the set S): 

f3(K) = max / .[K'] 
x, ~ lK ]  

f4(K) = max [ [K] /[K'] 

: K '  is axial and K'_.cK } ; 

: K" is axial and K _ K " }  . 
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In looking for the minimum values of these measures of axiality, it is natural 
to expect an extremal figure to be a polygon, since any oval can be approximated 
arbitrarily closely by a convex polygon, and since the measures assume nearly 
equal values on an oval and its approximating polygon (fa and f4 are continuous 
on x). Now if a polygon P is reflected about a line k through its interior to obtain 
the congruent reflected image PR, then P n PR and Cv(P UPk) a r e  both axial 
polygons, and hence the greatest (least) axial oval contained in (containing) P 
will again be a convex polygon. For these reasons, it is worthwhile to seek the 
largest (smallest) axial polygon of a given number of sides contained in 
(containing) an oval K. Besides being of use in finding lower bounds for the 
measures f3 and f4, questions of this type are interesting in themselves, and we 
have considered them at length elsewhere [3]. 

The inequality f3 (K)>  5/8 was first established by Krakowski [5], and 
fa(K) > �89 is a trivial consequence of the existence of a circumscribed rectangle 
of area no greater than twice that of the given oval. Nohl [6] has shown that 

fa(Kc) > 2(x/2 - 1), and in [3] we have established the existence, about every 
central oval Kc, of a circumscribed axial octagon 0(Kc) such that 

[K~] / [0(K~)] > ~/2/2, so that f4(Kc) > ~/2/2. 

It is well known that in every oval /;1 of constant breadth 1 there is an 
inscribed circle C(Ka) of diameter d > 2(3 - ~/3) / 3, with equality only for Tl, 
the Reuleaux triangle of constant breadth 1. Therefore, using this fact, and the 
isoperimetric inequality, we obtain 

> [C(Ka)] > [C(T~)] > [C(Ta)] 8 
fa(gl) = ~ ]  [ - ~  = [C-~ = 3 ( 2 - ~ / 3 ) " ~ 0 " 7 1 5 '  

where Ca is the circle of diameter 1. 
The convex axial set of least known area which contains every oval of diameter 1 

is the octagon r of Fig. 10, which J. P~I [7] constructed by removing the two 

J - ~ _ a /  

Fig. 10 
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isosceles triangles A and B tangent to the circle 6"1 from alternate corners of the 
circumscribed regular hexagon. An elementary computation gives 
[d?] = 2 - 2 x/3/3 ~ 0.8453. Since 0 covers every oval/(1 of cons tan t  breadth 1, 
and is axial, we obtain the following inequality: 

f4(K1) > [Kx] > [TI] _ 3 ( ~ -  x/3).~0.8337. 
= [0] = [0] 4 ( 3 - ~ / 3 )  

4. Besides comparing the area of  an oval with that of inscribed and 
circumscribed axial ovals, we may also compare their perimeters. This leads to 
to two measures of axiality analogous to fa and f4, since it has been known from 
the time of Archimedes that if one convex curve is contained in another, the 
length of the former is strictly less than that of the latter. In particular, we define, 
for every oval K (where I K I denotes the length of the curve ElK) the measures 
of axiality 

fs(K) = max 
K '  

f6(K) = max 
K "  

]K"[ : i s  a x i a l  a n d K  _ . 

As before, it is helpful in studying these measures, as well as being an 
interesting problem in itself, to investigate the bounds for perimeter ratios of 
inscribed and circumscribed axial polygons. This we have also done in [3], and 
shall make use of some of these results here. In particular, it is there shown that 
in every oval K there is an inscribed kite Q(K), i.e. a quadrilateral symmetric 
about one of its diagonals, (which may degenerate to an isosceles triangle in a 
particular case) such that [ Q(K)[ / ]  K[ > flo ~ 0.649. From this it follows that 

f , (K)  > flo. 

THEOREM 6. For every oval K, F6(K) > Yo "" 0.768. 

Proof. Assuming K has diameter AB = 1, it can be covered by a lens-shaped 
region, as in Fig. 11. Draw support lines EF and GH to K parallel to AB, and 
intersecting i K  in the (not necessarily unique) points C and D, respectively. The 
triangles ACB and A D B  (one of  which may be degenerate if A B c  I K )  have 
minimum perimeter when they are isosceles, i.e. when C coincides with I, and D 
with J. Since the oval FHGE is axial, we have 

f6(K) > ] K I / I F H G E  I > IAD Cl/IFHGEI >= [AJ II/IFHGEI. 
With B the origin of a rectangular coordinate system, and OJ = x, we define 

a = A s  + B S =  4 { 4 x  2 + 1} ; b = HG + 2 arcsin x + 2 4 { 1 - x 2 } - 1  ; 

e = A I  + IB ; d = A F  + FE + E B .  
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A 
F H 

B 
Fig. 11 

By symmetry, it is sufficient to determine the minimum value of only one of the 
ratios a/b, c/d. For this purpose, let f(x) = a /b; f  has a unique minimum value 
7o ~ 0.?68 on the interval [0, `/3/2] achieved for x = Xo ~ 0.32?. It follows 
from these remarks that 

IAJBII > a + c > min(a/b,c/d) = rain f (x)  = 7o 
f6(K) = ] F--H--G-/~] = b + d - 

which completes the proof of the theorem. 
In every central oval Kc there is an inscribed rhombus R(Kc) such that 

R(Kc) [ / [ Kc] > 5 o ,~ 0.8045 [3]. Thus, fs(Kc) > '~o. The same proof used to 
establish this fact also implies that fr(K~) ~ ~o. 

In every oval K 1 of constant breadth there is an inscribed kite Q(K1) such that 
] 0(1(1) [ / [/(1 ] ~ 2 x/2/n [3], which provides a lower bound for fs(K~). The 
perimeter of the universal cover r of ovals of diameter 1 (Fig. 10) is 

8(3 - ,/3) / 3 ~ 3.381, 

as an easy computation shows, and since r is axial, we obtain the inequality 

31r ~ 0.9291, 
f 6 ( g l )  ~ -- 8 ( 3 -  %/3) 

since every oval of constant breadth 1 has perimeter n. 
We close this section with a few remarks relative to the two measures in 

question, and a conjecture. In every case where the extremal figure of the class 
x for a measure of axiality or centrality is known, it is a triangle. To establish 
this fact for the measures of centrality analogous to f5 and f r ,  Griinbaum [4, 
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p. 257] makes use of a property of "superminimality." A measure f  (of centrality 
or axiality) is said to possess this property if, for every pair of ovals K and K', 

f ( K  + K') > min { f (K) , f (K ' ) } ,  

where the " + "  denotes Minkowski addition. In particular, if both K and K' 
are symmetric, K + K' must be symmetric if this property is to hold. However, 
it is easy to see (Fig. 12) that the sum of two axial ovals need not be axial if their 
respective axes of symmetry are not parallel. Hence, no measure of  axiality can 
possess this property, and it cannot be used to show that a triangle is an extremal 
figure for any such measure. Nevertheless, we conjecture that this is true for fs 
and have established the fact that fs(T) > rio ~ 0.9168, where T is a triangle [2]. 
The proof  of this fact is elementary, but long, and we shall not give it here. If  
this conjecture is correct, then rio is the best possible lower bound for fs. 

+ 

Fig. 12 

5. Several measures of  axiality arise from a method of symmetrization due to 
Steiner. The Steiner symmetrand Kk~) of an oval K with respect to a line k normal 
to the direction q~ is an axial oval obtained by replacing every chord of K in the 
direction tp by a segment of equal length which lies along the same line and has 
its midpoint on k = k(~). 

If  k n K ~ ~ ,  then K t~ Kk* 4: ~ .  If  K is already axial, then it is clear that 
the Steiner symmetrand of  K with respect to any of its axes of symmetry is K 
itself: if K is not axial, then for every direction qS, and for every line k(~b) normal 
to this direction, K r~ Kk~) is a proper subset of K, and Cv[K U K*(~)] properly 
contains K. It is well known that [Kk~)] = [K], and that I I _<_ I K I, with 
equality if and only if K is already axial with respect to a line parallel to k(tp). 
With these remarks in mind, we can define the following measures of axiality: 

fT(K) = max max /[K~'(~)~K].j  / 
t [ I ( ]  ' 

fs (K)  = max max / r, K] )]}. 
k I[Cv(Kk(~, ~ u K  ' 

fg(K) = max max t.[ K~(~)~ K I. ] O 

+ t IK I  J ' 
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rio(K) = max max / [K] 
§ ~ t l C v ( K ~ , ) U K ) I J  ; 

f , , (K)  = max max / ] - - K ~ ]  . 
k 

These measures are especially difficult to evaluate, even on the simplest ovals. 
However, lower bounds may be obtained for them from the facts that, for every 
oval K, fl(K) => fl-4(K), i----7, 8, 9, 10, and fil(K) >=fa(K). Thus, the bounds we 
have obtained for the measures of  axiality discussed in Sections 3 and 4 are also 
bounds for the measures of  axiality defined in the present section. To establish 
these facts, we prove the following 

THEOREM 7. For every oval K, f7(K) > fa(K), with equality only when K is axial. 

Proof. In Fig. 13, Kk denotes the image of the oval K reflected in the line 
k = k($), and the broken curve is the boundary of K* = K* Let J~k = KR C~ K 

Kk , / ~  

Fig. 13 

and R* = K* n K. If  ~ is a chord of K in the direction q~, then ~ is either bisected 
by the line k or it is not. If  it meets k but is not bisected by it, then ~ is divided 
by k ' i n to  two parts 7' and 7", chosen such that ]7 ' ]  < ] 7 " ] .  Let 9 = ~ n R k  
and 9" ----- ? t3 g * ;  then 

191 = 2" I~" l < 17'1 + 1 7 1 / 2 = 1 9 " 1  < I~/I + I~"l = I~'1, 

by the de~nitions of X~ and X*. ~f ~, is bisected by a:, then I~"l = I ~'" I and 
191 = I 9' I = I 71. If~, does not meet k at all, then ~; = eS, and l ~* I -<- 171 /2. 
'I~u~, in ~al cases, we have 191 --< I ~*1 --< I~'1" Furthermore, since this is true 
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for every chord ~ in the given direction ~b, for every line k($) normal to th is  

direction, and for every direction ~b, we have in every case /~k(,) _c/~§ _ K, 
and /~k(,) = /~*i(,) = K only when ~ = 9" = Y, for every chord y in a given 
direction, which can occur only if K is axial. From the definitions off3 andfT, it 
now follows that f7(K) > f3(K) for every oval K, with equality only when K is 
axial. 

The other results stated in the preceding paragraph may be proved in a similar 
manner. We can improve the bound for f t t  on the class of ovals of constant 
breadth by means of the following 

THEOREM 8. For ovals of constant breadth, fll(Kl) ~ ~/{2 - 2~/3/n} ~ 0.948. 

Proof. Among all ovals of constant breadth 1 (and hence constant perimeter n) 
the Releaux triangle T1 has least area and the circle C1 the greatest area. Hence 
among all curves K I of constant breadth with fixed area 1, the Reuleaux triangle 
T 1 has the greatest, and the circle C ~ the least, perimeter. An easy calculation 
yields I c l l  = and I I = 43)}. Since the area of an oval 
is invariant under Steiner symmetrization, a Steiner symmetrand (K~) * o fK ~ still 
has area 1, although it need no longer be an oval of constant breadth. From 
these remarks, the isoperimetric inequality, and the fact that Steiner symmetri- 
zation cannot increase the perimeter of an oval, it follows that 

24 =IC' I <-_IK I 43)3, 
and hence that 

f , l ( K 1 ) >  I(g0*l >11 1 > = IK11 = = 4 { 2 - 2 ~ / 3 / n } .  

Since fl t is similarity-invariant, the same inequality holds for an oval of constant 
breadth 1. 

In closing, it seems worthwhile to point out that only the result of Theorem 1 
and that of Nohl [6] are certainly the best possible, and it is highly improbable 
that any of the others are. A paper of Chakerian and Stein [1] contains everything 
that seems to be known about analogous measures of symmetry in higher 
dimensions. 
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